DIFFERENTIAL SUBORDINATION FOR FUNCTIONS ASSOCIATED WITH THE LEMNISCATE OF BERNOULLI

Rosihan M. Ali, Nak Eun Cho*, V. Ravichandran and S. Sivaprasad Kumar
Dedicated to Professor H. M. Srivastava on the Occasion of his Seventieth Birth Anniversary

Abstract. Conditions on β are determined so that $1+\beta z p^{\prime}(z)$ subordinated to $\sqrt{1+z}$ implies p is subordinated to $\sqrt{1+z}$. Analogous results are also obtained involving the expressions $1+\beta z p^{\prime}(z) / p(z)$ and $1+\beta z p^{\prime}(z) / p^{2}(z)$. These results are applied to obtain sufficient conditions for normalized analytic functions f to satisfy the condition $\left|\left(z f^{\prime}(z) / f(z)\right)^{2}-1\right|<1$.

1. Introduction

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Let $\mathcal{S} \mathcal{L}$ be the class of functions defined by

$$
\mathcal{S L}:=\left\{f \in \mathcal{A}:\left|\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}-1\right|<1\right\} \quad(z \in \mathbb{D})
$$

Thus a function $f \in \mathcal{S} \mathcal{L}$ if $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right-half of the lemniscate of Bernoulli given by $\left|w^{2}-1\right|<1$. Since this region is contained in the right-half plane, functions in $\mathcal{S} \mathcal{L}$ are starlike functions, and in particular univalent. A starlike function is characterized by the condition $\operatorname{Re} z f^{\prime}(z) / f(z)>0$ in \mathbb{D}. For two functions f and g analytic in \mathbb{D}, the function f is said to be subordinate to g, written $f(z) \prec g(z) \quad(z \in \mathbb{D})$, if there exists a function w analytic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$. In particular, if the function g is univalent in \mathbb{D}, then $f(z) \prec g(z)$ is equivalent to $f(0)=g(0)$ and $f(\mathbb{D}) \subset g(\mathbb{D})$. In terms of subordination, the class $\mathcal{S L}$ consists of normalized analytic functions f satisfying $z f^{\prime}(z) / f(z) \prec \sqrt{1+z}$. This class $\mathcal{S} \mathcal{L}$ was introduced by Soko 1 and Stankiewicz

[^0][23]. Paprocki and Soko l[14] discussed a more general class $\mathcal{S}^{*}(a, b)$ consisting of normalized analytic functions f satisfying $\left|\left[z f^{\prime}(z) / f(z)\right]^{a}-b\right|<b, b \geq \frac{1}{2}, a \geq 1$. Sok6 1 and Stankiewicz [23] determined the radius of convexity for functions in the class $\mathcal{S} \mathcal{L}$. They also obtained structural formula, as well as growth and distortion theorems for these functions. Estimates for the first few coefficients of functions in $\mathcal{S L}$ were obtained in [24]. Recently, Sokó 1 [25] determined various radii for functions belonging to the class \mathcal{S}; these include the radii of convexity, starlikeness and strong starlikeness of order α. Recently the $\mathcal{S} \mathcal{L}$-radii for certain well-known classes of functions including the Janowski starlike functions were obtained in [1]. General radii problems were also recently considered in [2] wherein certain radii results for the class $\mathcal{S} \mathcal{L}$ were obtained as special cases.

The class of Janowski starlike functions [7], denoted by $S^{*}[A, B]$, consists of functions $f \in \mathcal{A}$ satisfying the subordination

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z}, \quad(-1 \leq B<A \leq 1)
$$

Silverman [20], Obradovic and Tuneski [11] and several others (see [9, 10, 12, 16, 18]) have studied properties of functions defined in terms of the quotient $\left(1+z f^{\prime \prime}(z)\right.$ $\left./ f^{\prime}(z)\right) /\left(z f^{\prime}(z) / f(z)\right)$. In fact, Silverman [20] derived the order of starlikeness for functions in the class G_{b} defined by

$$
G_{b}:=\left\{f \in \mathcal{A}:\left|\frac{1+z f^{\prime \prime}(z) / f^{\prime}(z)}{z f^{\prime}(z) / f(z)}-1\right|<b, 0<b \leq 1, z \in \mathbb{D}\right\}
$$

Obradovic and Tuneski [11] have improved the result of Silverman [20] by showing $G_{b} \subset S^{*}[0,-b] \subset S^{*}(2 /(1+\sqrt{1+8 b}))$. Later Tuneski [26] obtained conditions for the inclusion $G_{b} \subset S^{*}[A, B]$ to hold. Letting $z f^{\prime}(z) / f(z)=: p(z)$, then $G_{b} \subset S^{*}[A, B]$ becomes a special case of the differential chain

$$
\begin{equation*}
1+\beta \frac{z p^{\prime}(z)}{p(z)^{2}} \prec \frac{1+D z}{1+E z} \Rightarrow p(z) \prec \frac{1+A z}{1+B z} \tag{1.1}
\end{equation*}
$$

Similarly, for $f \in \mathcal{A}$ and $0 \leq \alpha<1$, Frasin and Darus [5] showed that

$$
\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)} \prec \frac{(1-\alpha) z}{2-\alpha} \Rightarrow\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1-\alpha
$$

Again by writing $\frac{z^{2} f^{\prime}(z)}{(f(z))^{2}}$ as $p(z)$, the above implication is a particular case of

$$
\begin{equation*}
1+\beta \frac{z p^{\prime}(z)}{p(z)} \prec \frac{1+D z}{1+E z} \Rightarrow p(z) \prec \frac{1+A z}{1+B z} \tag{1.2}
\end{equation*}
$$

Li and Owa [13] showed that $f(z) \in S^{*}$ if $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left(\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)\right\}>-\frac{\alpha}{2}, \quad z \in \mathbb{D}
$$

for some $\alpha(\alpha \geq 0)$. Related results may also be found in the works of [15, 17, 21, 22].
The implications (1.1) and (1.2) have been considered in [3]. All the results discussed above led us to consider differential implications with the superordinate function $(1+A z) /(1+B z)$ replaced by the superordinate function $\sqrt{1+z}$ that maps \mathbb{D} onto the right-half of the lemniscate of Bernoulli. Additionally, applications of our results will yield sufficient conditions for functions $f \in \mathcal{A}$ to belong to the class $\mathcal{S} \mathcal{L}$.

The following results will be required.
Lemma 1.1. [8, Corollary 3.4h.1, p. 135]. Let q be univalent in \mathbb{D}, and let φ be analytic in a domain containing $q(\mathbb{D})$. Let $z q^{\prime}(z) \varphi(q(z))$ be starlike. If p is analytic in $\mathbb{D}, p(0)=q(0)$ and satisfies

$$
z p^{\prime}(z) \varphi(p(z)) \prec z q^{\prime}(z) \varphi(q(z))
$$

then $p(z) \prec q(z)$, and q is the best dominant.
A more general version of the above lemma is the following:
Lemma 1.2. [8, Theorem 3.4h, p. 132]. Let q be univalent in the unit disk \mathbb{D} and ϑ and φ be analytic in a domain D containing $q(\mathbb{D})$ with $\varphi(w) \neq 0$ when $w \in q(\mathbb{D})$. Set $Q(z)=z q^{\prime}(z) \varphi(q(z)), h(z)=\vartheta(q(z))+Q(z)$. Suppose that
(1) either h is convex, or Q is starlike univalent in \mathbb{D}, and
(2) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}>0$ for $z \in \mathbb{D}$.

If p is analytic in $\mathbb{D}, p(0)=q(0)$ and satisfies

$$
\vartheta(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \vartheta(q(z))+z q^{\prime}(z) \varphi(q(z)),
$$

then $p(z) \prec q(z)$, and q is the best dominant.

2. Main Results

We first determine a lower bound for β so that $1+\beta z p^{\prime}(z) \prec \sqrt{1+z}$ implies $p(z) \prec \sqrt{1+z}$.

Lemma 2.1. Let p be an analytic function on \mathbb{D} and $p(0)=1$. Let $\beta_{0}=2 \sqrt{2}$ $(\sqrt{2}-1) \approx 1.17$. If the function p satisfies the subordination

$$
1+\beta z p^{\prime}(z) \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)
$$

then p also satisfies the subordination

$$
p(z) \prec \sqrt{1+z} .
$$

The lower bound β_{0} is best possible.

Proof. Define the function $q: \mathbb{D} \rightarrow \mathbb{C}$ by $q(z)=\sqrt{1+z}$ with $q(0)=1$. Since $q(\mathbb{D})=\left\{w:\left|w^{2}-1\right|<1\right\}$ is the right-half of the lemniscate of Bernoulli, $q(\mathbb{D})$ is a convex set and hence q is a convex function. This shows that the function $z q^{\prime}(z)$ is starlike with respect to 0 . By Lemma 1.1, it follows that the subordination

$$
1+\beta z p^{\prime}(z) \prec 1+\beta z q^{\prime}(z)
$$

implies $p(z) \prec q(z)$. In light of this differential chain, the result is proved if it could be shown that

$$
q(z)=\sqrt{1+z} \prec 1+\beta z q^{\prime}(z)=1+\frac{\beta z}{2 \sqrt{1+z}}=: h(z)
$$

Since $q^{-1}(w)=w^{2}-1$, it follows that

$$
q^{-1}(h(z))=\left(2+\frac{\beta z}{2 \sqrt{1+z}}\right) \frac{\beta z}{2 \sqrt{1+z}} .
$$

For $z=e^{i t}, t \in[-\pi, \pi]$, clearly

$$
\left|q^{-1}(h(z))\right|=\left|q^{-1}\left(h\left(e^{i t}\right)\right)\right|=\frac{\beta}{2 \sqrt{2 \cos \frac{t}{2}}}\left|2+\frac{\beta e^{i \frac{3 t}{4}}}{2 \sqrt{2 \cos \frac{t}{2}}}\right|
$$

A calculation shows that the minimum of the above expression is attained at $t=0$. Hence

$$
\left|q^{-1}\left(h\left(e^{i t}\right)\right)\right| \geq \frac{\beta}{2 \sqrt{2}}\left(2+\frac{\beta}{2 \sqrt{2}}\right)=\left(1+\frac{\beta}{2 \sqrt{2}}\right)^{2}-1 \geq 1
$$

provided $\beta \geq 2 \sqrt{2}(\sqrt{2}-1)$. Hence $q^{-1}(h(\mathbb{D})) \supset \mathbb{D}$ or $h(\mathbb{D}) \supset q(\mathbb{D})$. This shows that $q(z) \prec h(z)$, and completes the proof.

Theorem 2.2. Let $\beta_{0}=2 \sqrt{2}(\sqrt{2}-1) \approx 1.17$ and $f \in \mathcal{A}$.
(1) If f satisfies the subordination

$$
1+\beta \frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)
$$

then $f \in \mathcal{S} \mathcal{L}$.
(2) If $1+\beta z f^{\prime \prime}(z) \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)$, then $f^{\prime}(z) \prec \sqrt{1+z}$.

Proof. Define the function $p: \mathbb{D} \rightarrow \mathbb{C}$ by

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)}
$$

Then p is analytic in \mathbb{D} and $p(0)=1$. A calculation shows that

$$
z p^{\prime}(z)=\frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)
$$

Applying Lemma 2.1 to this function p yields the first part of the theorem. The second part follows by taking $p(z)=f^{\prime}(z)$ in Lemma 2.1.

Lemma 2.3. Let $\beta_{0}=4(\sqrt{2}-1) \approx 1.65$. If

$$
1+\frac{\beta z p^{\prime}(z)}{p(z)} \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)
$$

then

$$
p(z) \prec \sqrt{1+z} .
$$

The lower bound β_{0} is best possible.
Proof. Let q be the convex function given by $q(z)=\sqrt{1+z}$, and consider the subordination

$$
1+\frac{\beta z p^{\prime}(z)}{p(z)} \prec 1+\frac{\beta z q^{\prime}(z)}{q(z)}
$$

A calculation shows that

$$
\frac{\beta z q^{\prime}(z)}{q(z)}=\frac{\beta z}{2(1+z)}
$$

is convex in \mathbb{D} (and hence starlike). Thus, in view of Lemma 1.1, it follows that $p(z) \prec q(z)$. To complete the proof, it is left to show that

$$
q(z)=\sqrt{1+z} \prec 1+\frac{\beta z q^{\prime}(z)}{q(z)}=1+\frac{\beta z}{2(1+z)}=: h(z) .
$$

Since $h(\mathbb{D})=\{w:$ Rew $<1+\beta / 4\}$, and $q(\mathbb{D})=\left\{w:\left|w^{2}-1\right|<1\right\} \subset\{w:$ Rew $<\sqrt{2}\}$, it follows that $q(\mathbb{D}) \subset h(\mathbb{D})$ if $\sqrt{2} \leq 1+\beta / 4$. Thus $q(z) \prec h(z)$ for $\beta \geq 4(\sqrt{2}-1)$, and this completes the proof.

Theorem 2.4. Let $\beta_{0}=4(\sqrt{2}-1) \approx 1.65$ and $f \in \mathcal{A}$.
(1) If f satisfies

$$
1+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)
$$

then $f \in \mathcal{S} \mathcal{L}$.
(2) If f satisfies

$$
1+\beta\left(\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right) \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)
$$

then

$$
\frac{z^{2} f^{\prime}(z)}{f^{2}(z)} \prec \sqrt{1+z}
$$

Proof. The results follows from Lemma 2.3 by taking $p(z)=\frac{z f^{\prime}(z)}{f(z)}$ and $p(z)=\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}$ respectively.

Lemma 2.5. Let $\beta_{0}=4 \sqrt{2}(\sqrt{2}-1) \approx 2.34$. If

$$
1+\frac{\beta z p^{\prime}(z)}{p^{2}(z)} \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right)
$$

then

$$
p(z) \prec \sqrt{1+z} .
$$

The lower bound β_{0} is best possible.
Proof. With q being the convex function $q(z)=\sqrt{1+z}$, consider the function Q defined by

$$
Q(z):=\frac{z q^{\prime}(z)}{q^{2}(z)}=\frac{z}{2(1+z)^{\frac{3}{2}}}
$$

Since

$$
\operatorname{Re} \frac{1+(1-2 \alpha) z}{1-z}>\alpha \quad(0 \leq \alpha<1)
$$

it follows that

$$
\operatorname{Re} \frac{z Q^{\prime}(z)}{Q(z)}=\operatorname{Re} \frac{2-z}{2(1+z)}>\frac{1}{4}>0
$$

Thus the function Q is starlike and Lemma 1.1 shows that the subordination

$$
1+\frac{\beta z p^{\prime}(z)}{p^{2}(z)} \prec 1+\frac{\beta z q^{\prime}(z)}{q^{2}(z)}
$$

implies $p(z) \prec q(z)$. We next show that

$$
q(z)=\sqrt{1+z} \prec 1+\frac{\beta z q^{\prime}(z)}{q^{2}(z)}=1+\frac{\beta z}{2(1+z)^{\frac{3}{2}}}=: h(z) .
$$

Since $q^{-1}(w)=w^{2}-1$, then

$$
q^{-1}(h(z))=\left(2+\frac{\beta z}{2(1+z)^{\frac{3}{2}}}\right) \frac{\beta z}{2(1+z)^{\frac{3}{2}}} .
$$

Thus with $z=e^{i t}, t \in[-\pi, \pi]$, yields

$$
\left|q^{-1}(h(z))\right|=\left|q^{-1}\left(h\left(e^{i t}\right)\right)\right|=\frac{\beta}{2\left(2 \cos \frac{t}{2}\right)^{\frac{3}{2}}}\left|2+\frac{\beta e^{i \frac{t}{4}}}{2\left(2 \cos \frac{t}{2}\right)^{\frac{3}{2}}}\right|
$$

A computation shows that the minimum of the above expression is attained at $t=0$. Hence

$$
\left|q^{-1}\left(h\left(e^{i t}\right)\right)\right| \geq \frac{\beta}{4 \sqrt{2}}\left(2+\frac{\beta}{4 \sqrt{2}}\right)=\left(1+\frac{\beta}{4 \sqrt{2}}\right)^{2}-1 \geq 1
$$

for $\beta \geq 4 \sqrt{2}(\sqrt{2}-1)$. Hence $q(z) \prec h(z)$.
By taking $p(z)=\frac{z f^{\prime}(z)}{f(z)}$ in Lemma 2.5, we obtain the following theorem.

Theorem 2.6. Let $\beta_{0}=4 \sqrt{2}(\sqrt{2}-1) \approx 2.34$ and $f \in \mathcal{A}$. Then $f \in \mathcal{S L}$ if

$$
1-\beta+\beta \frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}} \prec \sqrt{1+z} \quad\left(\beta \geq \beta_{0}\right) .
$$

Lemma 2.7. Let $0<\alpha \leq 1$. If $p \in \mathcal{A}$ satisfies

$$
(1-\alpha) p(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z) \prec \sqrt{1+z},
$$

then $p(z) \prec \sqrt{1+z}$.
Proof. Define the function q by $q(z)=\sqrt{1+z}$. We first show that $p(z) \prec q(z)$ if p satisfies

$$
(1-\alpha) p(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z) \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z) .
$$

For this purpose, let the functions ϑ and φ be defined by $\vartheta(w):=(1-\alpha) w+\alpha w^{2}$ and $\varphi(w):=\alpha$. Clearly the functions ϑ and φ are analytic in \mathbb{C} and $\varphi(w) \neq 0$. Also let Q and h be the functions defined by

$$
Q(z):=z q^{\prime}(z) \varphi(q(z))=\alpha z q^{\prime}(z)
$$

and

$$
h(z):=\vartheta(q(z))+Q(z)=(1-\alpha) q(z)+\alpha q^{2}(z)+\alpha z q^{\prime}(z) .
$$

Since q is convex, the function $z q^{\prime}(z)$ is starlike, and therefore Q is starlike univalent in \mathbb{D}. In view of the fact that $\operatorname{Req}(z)>0$, it follows that

$$
\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\frac{1}{\alpha} \operatorname{Re}\left[(1-\alpha)+2 \alpha q(z)+\alpha\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right]>0 \quad(z \in \mathbb{D})
$$

for $0<\alpha \leq 1$. By Lemma 1.2, it follows that $p \prec q=\sqrt{1+z}$. To complete the proof, we seek conditions on α so that $q(z) \prec h(z)$, or equivalently $\left|\left[h\left(e^{i t}\right)\right]^{2}-1\right| \geq 1$ for all $t \in[-\pi, \pi]$. Now

$$
h(z)=\frac{\alpha z+2(1-\alpha)(1+z)+2 \alpha(1+z)^{3 / 2}}{2 \sqrt{1+z}},
$$

and a calculation shows that $\left|\left[h\left(e^{i t}\right)\right]^{2}-1\right|$ attains its minimum at $t=0$. Thus $\left|\left[h\left(e^{i t}\right)\right]^{2}-1\right| \geq\left|(h(1))^{2}-1\right|>1$ if $h(1)=\frac{8-3 \sqrt{2}}{4} \alpha+\sqrt{2}>\sqrt{2}$ and this holds for $\alpha>0$. Hence we conclude that $(1-\alpha) p(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z) \prec \sqrt{1+z}$ implies $p(z) \prec \sqrt{1+z}$.

Theorem 2.8. If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{f(z)}\left(1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \sqrt{1+z} \quad(0<\alpha \leq 1)
$$

then $\frac{z f^{\prime}(z)}{f(z)} \prec \sqrt{1+z}$, or equivalently $f \in \mathcal{S} \mathcal{L}$.

Proof. With $p(z)=\frac{z f^{\prime}(z)}{f(z)}$, a computation shows that

$$
p(z)+\frac{z p^{\prime}(z)}{p(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

Evidently

$$
\frac{z f^{\prime}(z)}{f(z)}\left(1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{z^{2} f^{\prime \prime}(z)}{f(z)}=(1-\alpha) p(z)+\alpha p^{2}(z)+\alpha z p^{\prime}(z)
$$

The result now follows from Lemma 2.7.

Acknowledgments

The work presented here was supported in part by grants from Universiti Sains Malaysia, National Research Foundation of Korea (No. 2011-0007037) and University of Delhi.

References

1. R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, preprint.
2. R. M. Ali, N. E. Cho, N. K. Jain and V. Ravichandran, Radii of starlikeness and convexity of functions defined by subordination with fixed second coefficient, preprint.
3. R. M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci., 2007, Art. ID 62925, 7 pp.
4. R. M. Ali, V. Ravichandran and N. Seenivasagan, On Bernardi's integral operator and the Briot-Bouquet differential subordination, J. Math. Anal. Appl., 324 (2006), 663-668.
5. B. A. Frasin and M. Darus, On certain analytic univalent functions, Int. J. Math. Math. Sci., 25(5) (2001), 305-310.
6. A. W. Goodman, Univalent Functions, Vols. $1 \& 2$, Polygonal Publ. House, Washington, New Jersey, 1983.
7. W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math., 28 (1973), 297-326.
8. S. S. Miller and P. T. Mocanu, Differential Subordination, Theory and Application, Marcel Dekker, Inc., New York, Basel, 2000.
9. M. Nunokawa, S. Owa, H. Saitoh, A. Ikeda and N. Koike, Some results for strongly starlike functions, J. Math. Anal. Appl., 212(1) (1997), 98-106.
10. M. Nunokawa, S. Owa, H. Saitoh and N. Takahashi, On a strongly starlikeness criteria, Bull. Inst. Math. Acad. Sinica, 31(3) (2003), 195-199.
11. M. Obradovic and N. Tuneski, On the starlike criteria defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 24 (2000), 59-64.
12. M. Obradović and S. Owa, On some criterions for starlikeness of order α, Rend. Mat. Appl. (7), 8(2) (1988), 283-289.
13. J.-L. Li and S. Owa, Sufficient Conditions for Starlikeness, Indian J. Pure Appl. Math., 33(3) (2002), 313-318.
14. E. Paprocki and J. Sokol, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94.
15. V. Ravichandran, C. Selvaraj and R. Rajalaksmi, Sufficient conditions for starlike functions of order α, JIPAM. J. Inequal. Pure Appl. Math., 3(5) (2002), Article 81, 6 pp. (electronic).
16. V. Ravichandran and M. Darus, On a criteria for starlikeness, Int. Math. J., 4(2) (2003), 119-125.
17. V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci. (FJMS), 12(1) (2004), 41-51.
18. V. Ravichandran, M. Darus and N. Seenivasagan, On a criteria for strong starlikeness, Aust. J. Math. Anal. Appl., 2(1) (2005), Art. 6, 12 pp.
19. T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, in: Computational methods and function theory (Penang), 319-324, World Sci. Publ., River Edge, NJ. 1994.
20. H. Silverman, Convex and starlike criteria, Int. J. Math. Math. Sci., 22(1) (1999), 7579.
21. S. Singh and S. Gupta, First order differential subordinations and starlikeness of analytic maps in the unit disc, Kyungpook Math. J., 45(3) (2005), 395-404.
22. S. Singh and S. Gupta, A differential subordination and starlikeness of analytic functions, Appl. Math. Lett., 19(7) (2006), 618-627.
23. J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 101-105.
24. J. Sokol, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J., 49(2) (2009), 349-353.
25. J. Sokol, Radius problems in the class $\mathcal{S L}$, Appl. Math. Comput., 214(2) (2009), 569573.
26. N. Tuneski, On the quotient of the representations of convexity and starlikeness, Math. Nachr., 248/249 (2003), 200-203.

Rosihan M. Ali
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM, Penang
Malaysia
E-mail: rosihan@cs.usm.my

Nak Eun Cho
Department of Applied Mathematics
Pukyong National University
Busan 608-737
South Korea
E-mail: necho@pknu.ac.kr
V. Ravichandran

Department of Mathematics
University of Delhi
Delhi-110 007
India
E-mail: vravi68@gmail.com
vravi@maths.du.ac.in
S. Sivaprasad Kumar

Department of Applied Mathematics
Delhi Technological University
Bawana Road, Delhi-110042
India
E-mail: spkumar@dce.ac.in

[^0]: Received May 10, 2011, accepted May 20, 2011. Communicated by H. M. Srivastava. 2010 Mathematics Subject Classification: Primary 30C45; Secondary 30C80.
 Key words and phrases: Starlike functions, Lemniscate of Bernoulli, Differential subordination, Differential superordination, Best subordinant, Best dominant.
 *Corresponding author.

